|LUMEL|

SCREEN RECORDER

KD8 TYPE

MODBUS TRANSMISSION PROTOCOL
SERVICE MANUAL

CONTENTS

page
1. APPLICATION ..t e et e e e e aeees 2
2. DESCRIPTION OF THE MODBUS PROTOCOL........cuuuiiiiiiiiiiiiiinaeenn. 2
P20 S N1 O 1 I 1 = 011 o 3
2.2, RTU framing coceeeeueeeeiiaeeee et 3
2.3. Characteristic of frame fieldScooi e 4
2.4, LRC CheCKING.....ccoi i s st e e e e e e e e e e e e eaan 5
2.5. CRC CheCKING ...cooeeiiiiiiiiee e 5.
2.6. Character format during serial tranSmMISSIONvviiiiiieieeeeeeeeeeeenee, 5
2.7. Transaction iNterrUPLiONccoovviiiiiiecememe e e e e e e e e e e e e s 5
3. DESCRIPTION OF FUNCTIONS ..ot 6
3.1 Readout of N-registers (Code 03)ccceveeiiiieeiiiiiiiieeeiirr e 6.
3.4. Report identifying the device (COde 17) o .cooviriiiiiiiiiiiiiie e, 6
4, ERROR CODES..... i ittt sttt e et e et e e e e e e e eaanaeenes 7
5. TABLE OF REGISTERS.cooiiiiiiiii ittt 9

APPENDIX A. CALCULATION OF THE CHECKSUM............ e, 11

1. APPLICATION

In order to obtain the information exchange, wheing the serial link, one must choose
the interface type and validate the interpretati@y of transmitted data. The interface type defines
only electrical transmission parameters and the afdlge device connection.

Such features, as the possibility to service séwdggices, check the transmission correctness
and the principles of access to the device, deparitie data interpretation.

The task of the protocol is to define which datpetys interpreted (permitted) and in which way
they are interpreted.

A MODBUS asynchronous character transmission protocol éas mplemented on the serial link
of theKD8 recorder. The parameter configuration of Rfe-485serial link is described in thHeD8
recorder user’'s manual.

Parameter set of tH€D8 recorder serial link:

* Recorder address 1..247

* Baud rate 300, 60200, 2400, 4800, 9600, 14400, 19200, 28800,
884 57600, 115200 bit/s

» Working mode ASCII, RTU

 Information unit ASCIl: 8NIN2, 7E1, 701

RTU:8N2, 8N1, 8E1,801
* Maximal turnaround time 100 ms

2. DESCRIPTION OF THE MODBUS PROTOCOL

The MODBUS interface is a standard adopted by natufers of industrial controllers for the
asynchronous character exchange of informationdevdifferent devices and measuring systems.
It has such features as:

» Simple access rule to the link based on the “eragdave" principle,

* Protection of transmitted messages against errors

» Confirmation of remote instruction realizatiordagrror signaling,

« Effective actions protecting against the systespension,

« Taking advantage of the asynchronous chara@ssitnission.

Device controllers working in th®1fODBUS protocol can communicate with each other, taking
advantage of thenaster-slaveprotocol type, in which only one device (timaster - superior unit)
can originate transactions (called "queries"), atiters (slaves - subordinate units) respond anly t
the remote requested data from timaster. The transaction is composed of the transmitted
command from thenaster unit to theslave unit and of the response transmitted in the opposi
direction. The response includes data requestdtidoynaster or the confirmation of the command
realization.

Master can transmit information to individual slaves amddcast messages destined for all
subordinate devices in the system (responses aretnoned to broadcast queries from the master)

The format of transmitted information is as followi

* master => slave: device address, code representing the requiradnamd, data to be sent,
control word protecting the transmitted message,

« slave => master: sender address, confirmation of the commandzaain, data required by
the master, control word protecting the responsénagerrors.

If the slavedevice detects an error when receiving a messagegnnot realizes the command, it
prepares a special message about the error occaraga transmits it as a response tantlaster.
Devices working in theMODBUS protocol can be set into the communication using of two
transmission modeASCIl or RTU. The user chooses the required mode, along withséiial

2

port communication parameters (baud rate, inforomatinit) during the configuration of any
device.

In the MODBUS system, transmitted messages are placed into $réma¢ are not related to serial
transmission. These frames have a defined begiranidgend. This enables for the receiving device
to reject incomplete frames and to signal relatedre with them.

Taking into consideration the possibility to operat one of these two different transmission modes
(ASCII or RTU), two frames have been defined.

Explanation of some abbreviations:

ASCII = American Standard Code for Information Interaygn

RTU = Remote Terminal Unit

LRC = Longitudinal Redundancy Check

CRC = Cyclic Redundancy Check CR = Carriage ReturrrlLine-Feed (character)
MSB = Most Significant Bit

Checksum= Control Sum

2.1. ASCII framing

In the ASCII mode, each byte of information is samtted as two ASCII characters. The basic
feature of this mode is that it allows to long mtds between characters within the message
(to 1 sec) without causing errors.

A typical message frame is shown below.

Start beginnin{ Address Function Data LRC End
index check index

1 char 2 chars 2 chars n chars 2 chars 2 chars

CR LF

In ASCIlI mode, messages start with a colon chargtfe-ASCIlI 3Ah) and end with CR and LF
characters. The frame information part is protedigdhe LRC code (Longitudinal Redundancy
Check).

2.2. RTU Framing

In RTU mode, messages start and end with an idtéegting minimum 3.5 x (lasting time of
a single character), in which a silence reignshenink.

The simplest implementation of the mentioned timtenval character times is a multiple measure
of the character duration time at the set baudaatepted on the link.

The frame format is shown below:

Start beginnin Address Function Data CRC check End indgx
index
T1-T2-T3-T4 8 bits 8 bits n x 8bits 16 bits T1-T2-T3-T4

Start and end indexes are marked symbolically asi@nval equal to four lengths of the index
(information unit). The checking code consists & lits and emerges as the result of CRC
calculation (Cyclical Redundancy Check) of the featontents.

2.3. Characteristic of frame fields.

Address field

The address field of a message frame contains tvevacters (in ASCIl mode) or eight bits
(in RTU mode).

Valid slave device addresses are in the range @e@47 . The master addresses the slave unit by
placing the slave address in the frame address Wéhen the slave sends its response, it places its
own address in the frame address field what enalemaster to check which slave is responding.
The 0 address is used as a broadcast address immbg all slave units connected to the bus.

Function field

The function code field of a message frame contauascharacters in ASCII mode or eight bits in
RTU mode. Valid codes are in the range from 1 - 255

When a message is sent from a master to a slaweegd#ve function code field tells the slave what
kind of action to perform.

When the slave responds to the master, the funfigtzhis uses to confirm the command execution
or error signaling if the function code field cahmealize the command for any reason. to indicate
either a normal (error-free) response or that skime of error occurred.

The positive confirmation is realized through th&cpment of the command execution code on the
function field.

In case of an error assertion, the slave returspegial code that is equivalent to the original
function code with its most significant logic 1.

The error code is placed on the data field of &sponse frame.

Data field

The data field is constructed using sets of twoadeximal digits, in the range of 00 to FF.

These numbers can be made from a pair of ASCllaciars or from one RTU character, according

to the network's serial transmission mode. The tlakd of messages sent from a master to slave
devices contains additional information which theeve must use to take the action defined by the
function code. This can include items like regisddresses, number of bytes in data field, data,
a.s.0. The data field can be non-existent (of zength) in certain kinds of frames. That occurs

always, when the operation defined by the code doesequire any parameters.

Error checking field

Two kinds of error-checking methods are used f@endard MODBUS networks. The error
checking field contents depends upon the methadsheeing used.

ASCII

When ASCII mode is used for character framing, ¢ner checking field contains two ASCII
characters. The error check characters are thdt fsa Longitudinal Redundancy Check (LRC)
calculation that is performed on the message ctaténithout the beginning “colon" and
terminating CRLF characters). LRC characters angeagled to the message, as the last field
preceding the CR, LF characters.

RTU

When RTU mode is used for character framing, thierezhecking field contains a 16-bit value
implemented as two 8-bit bytes. The error checke@ the result of a Cyclical Redundancy Check
Calculation (CRC) performed on a message contéhes.CRC field is appended to the message as
the last field in the message. When this is dame,léw-order byte of the field is appended first,
followed by the high-order byte. The CRC high-orlgte is the last byte to be sent in the message.

4

2.4. LRC checking

The LRC is calculated by adding together succes8ibé bytes of the message, discarding any
carries, and then two is complementing the resulis performed on the ASCII message field
contents excluding the “colon” character that bedive message, and excluding the CR, LF pair at
the end of the message. The 8-bit value of the kR4 is placed at the frame end as two ASCII
characters, first the character containing the dndbtrad, and after it, the character containivey t
lower LRC tetrad.

2.5. CRC checking

The generating procedure of CRC is realized acngrtti the following algorithm:

1. Load a 16-bit register with FFFFh. Call ttiie CRC register.

2. Exclusive OR (XOR) the first 8-bit byte bkt message with the low-order byte of
the 16 bit CRC register, putting the result in @RC register.

3. Shift the CRC register contents one bitright (towards the LSB), zero-filling
the MSB. Extract and examine the LSB.

4. (If the LSB was O): Repeat step 3 (anothét){If the LSB was 1): XOR
the CRC register with the polynomial value A0O1h.

5. Repeat steps 3 and 4 until 8 shifts have pediormed. When this is done,
a complete 8-bit byte will have been processed.

6. Repeat steps 2 through 5 for the next &y of the message.

Continue doing this until all bytes have been pssed.

The final contents of the CRC register s @RC value.

When the CRC is placed into the messagapjper and lower bytes

must be swapped as described below.

© N

2.6. Character format during serial transmission

In the MODBUS protocol, characters are transmitted from the ki@ the highest bit.
Organization of the information unit in the ASClbde:

« 1 start bit,

* 7 data field bits,

« 1 even parity check bit (odd) or lack of evenityazheck bit,

* 1 stop bit at even parity check or 2 stop bitewkack of even parity check.

Organization of the information unit in the RTU neod

* 1 start bit,

* 8 data field bits,

« 1 even parity check bit (odd) or lack of evenityarheck bit,

« 1 stop bit at even parity check or 2 stop bitewkack of even parity check.

2.7. Transaction interruption

In the master unit the user sets up the importardrpeter which is the "maximal response time on
the query frame" after exceeding of which, the geation is interrupted. This time is chosen such
that each slave unit working in the system (evensibwest) normally will have the time to answer
to the frame query. An exceeding of this time astéiserefore about an error and such is treated by
the master unit.

If the unit slave will find out a transmission aribdoes not accomplish the order and does nat sen
any answer. That causes an exceeding of the waitmgafter the query frame and the transaction
interruption.

3. DESCRIPTION OF FUNCTIONS

In the KD8 recorder following protocol functionsshibeen implemented:

Code Signification
03 Reading of n-register
17 Slave device identification

3.1. Reading of n-registers (code 03)

Request:

The function enables the reading of values includedgisters in being addressed slave device.
Registers are 16 or 32-bit units, which can includaumerical values bounded with changeable
processes, and the likeThe request frame defines the 16-bit start addredshe number of
registers to read-out.

The signification of the register contents with sed$ data can be different for different device

types.
The function is not accessible in the broadcastenod

Example: Reading of 3 registers beginning by the regisién the 6Bh address.

Address | Function | Register | Register | Number of | Number of | Checksum
address | address | registers | registers

Hi Lo Hi Lo
11 03 00 6B 00 03 7E LRC

Answer:

Register data are packing beginning from the srsiadiddress: first the higher byte, then the lower
register byte.

Example: the answer frame

Addresg Function Number Value| Value| Value| Value| Value| Value| Checksum
of bits | in theg in the|in the|in the| in the|in the
regist| regist| regist| regist| regist| regist
107 | 107 | 108 | 108 | 109 | 109
Hi Lo Hi Lo Hi Lo

11 03 06 02 2B 00 00 o]0 64 55 LRC

3.2. Report identifying the device (code 17)

Request:

This function enables the user to obtain infornratibout the device type, status and configuration
depending on this.

Example
Address | Function Checksum
11 11 DE LR
C
Answer:

The field ,,Device identifier" in the answer framimeans the unique identifier of this class of device
however the other fields include parameters depkoddhe device type.

Example concerning the KD8 recorder

Slave addreqgs Function Number of Device Device state] Checksum
bytes identifier
11 11 02 B2 FF 48| 1F

4. ERROR CODES

When the master device is broadcasting a requdbitslave device then, except for messages in
the broadcast mode, it expects a correct answégr Aénding the request of the master unit, one of
the four possibilities can occur:

« If the slave unit receives the request withotraasmission error and can execute it correctnth
it returns a correct answer,

« If the slave unit does not receive the requaesamswer is returned. Timeout conditions for the
request will be fulfilled in the master device praqg.

« If the slave unit receives the request, but wiimsmission errors (even parity error of checking
sum LRC or CRC), no answer is returned. Timeoutan for the request will be fulfilled in the
master device program.

« If the slave unit receives the request withotraasmission error but cannot execute it correctly
(e.g. if the request is, the reading-out of a neistent bit output or register), then it returns th
answer including the error code, informing the raadevice about the error reason.

A message with an incorrect answer includes twidgidistinguishing it from the correct answer.

1. The function code field:

In the correct answer, the slave unit retransrhigsftinction code from the request message in the
field of the answer function code. All function esdhave the most-significant bit (MSB) equal zero
(code values are under 80h). In the incorrect ansthe slave unit sets up the MSB bit of the
function code at 1. This causes that the functmatecvalue in the incorrect answer is exactly of 80h
greater than it would be in a correct answer.

On the base of the function code with a set up MBBhe program of the master device can
recognize an incorrect answer and can check tle evde on the data field.

2. The data field:

In a correct answer the slave device can retura tethe data field (certain information requirgd b
the master unit). In the incorrect answer the slani returns the error code to the data field.
It defines conditions of the slave device which lprdduced the error. An example considering
a request of a master device and the incorrecta@mnsfithe slave unit has been shown below. Data
are in the hexadecimal shape.

Example: request

Slave Function| Variablg Variable Numbe Number Gsam
address addresg addresp of Of
H1 Lo Variables Variables
Hi Lo
OA 01 04 Al 00 01 4F LRC

Example: incorrect answer
Slave Function Error Checksum
OA 81 02 73 LRC

In this example the master device addresses thgesedo the slave unit with No 10 (OAh).
The function code (01) serves to the read-out a@jperaf the bit input state. Then, this frame
means the request of the status read-out of aibmghbt with the address number: 1245 (04A1h).

7

If in the slave device there is no bit input withetgiven address, then the device returns
the incorrect answer with the No 02 error codesTheans a forbidden data address in the slave
device.

Possible error codes and their meanings are shotheitable below.

Code Meaning
01 Forbidden function
02 Forbidden data address
03 Forbidden data value
04 Damage in the connected device
05 Confirmation
06 Occupied, message removed
07 Negative confirmation
08 Error of memory parity

5. Table of registers

KD8 recorder identifier (set as a respons #itlentification function) : 0xB2
Register types (,Typ” kolumn):
float — floating point number (see the digdion below),
sfloat — floating point number (see theadigsion below).
= Access modes to register:
RO — only for readout.
* Representation of floating point numbers ({fligEE 754)

byte: 4 byte 3 byte 2 byte 1
SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM
S — character bit (Sign bit)

E — exponent

M — mantissa

Register bytes dioat type are sent in 4321 sequence

Register bytes dffloat type are sent in 2143 sequence

PROCESSING DATA

Addresses of
16-bit addressed

registers
Word type

Description

5000 Alarm states:

Bit 0 — alarm 1 of analog input 1 (AL1 - alarm outfi)

Bit 1 — alarm 2 of analog input 1 (AL2 - alarm out2)

Bit 2 — alarm 1 of analog input 2 (AL3 - alarm oui|3)

Bit 3 — alarm 2 of analog input 2 (AL4 - alarm outg)

Bit 4 — alarm 1 of analog input 3 (AL5 - alarm out®)

Bit 5 — alarm 2 of analog input 3 (AL6 - alarm out6)

Bit 6 — alarm 1 of analog input 4 (AL7 - alarm outfy)

Bit 7 — alarm 2 of analog input 4 (AL8 - alarm out3)

Bit 8 — alarm 1 of analog input 5 (AL9 - alarm oui}®)

Bit 9 — alarm 2 of analog input 5 (AL10 - alarm puit 10)
Bit 10 — alarm 1 of analog input 6 (AL11 - alarmijmut 11)
Bit 11 — alarm 2 of analog input 6 (AL12 - alarmtjput 12)

Addresses of | Addresses of

16-bit addressed 32-bit
. addressed .
registers) Description
registers

Float sfloat Float | sfloat
type type type type

7000 | 7200 7500 7700 Value of input 1

7002 | 7202 7501 7701 Value of input 2

7004 | 7204 7502 7702 Value of input 3

7026 | 7226 7513 7713 Value of input 14

7100 | 7300 7600 7800 Value of analog input 1

7102 | 7302 7601 7801 Value of analog input 2

7104 | 7304 7602 7802 Value of analog input 3

7106 | 7306 7603 7803 Value of analog input 4

7108 | 7308 7604 7804 Value of analog input 5

7110 | 7310 7605 7805 Value of analog input 6

7130 | 7330 7630 7830 Value of binary input 1

7132 | 7332 7631 7831 Value of binary input 2

7134 | 7334 7632 7832 Value of binary input 3

7136 | 7336 7633 7833 Value of binary input 4

7138 | 7338 7634 7834 Value of binary input 5

7140 | 7340 7635 7835 Value of binary input 6

7142 | 7342 7636 7836 Value of binary input 7

7144 | 7344 7637 7837 Value of binary input 8

7160 | 7360 7660 7860 Alarm 1 of analog input 1 (ALdlarm output 1)

7162 | 7362 7661 7861 Alarm 2 of analog input 1 (AL&larm output 2)

7164 | 7364 7662 7862 Alarm 1 of analog input 2 (AL&larm output 3)

7166 | 7366 7663 7863 Alarm 2 of analog input 2 (ALdlarm output 4)

7168 | 7368 7664 7864 Alarm 1 of analog input 3 (AL&larm output 5)

7170 | 7370 7665 7865 Alarm 2 of analog input 3 (AL&larm output 6)

7172 | 7372 7666 7866 Alarm 1 of analog input 4 (ALalarm output 7)

7174 | 7374 7667 7867 Alarm 2 of analog input 4 (AL&larm output 8)

7176 | 7376 7668 7868 Alarm 1 of analog input 5 (AL&larm output 9)

7178 | 7378 7669 7869 Alarm 2 of analog input 5 (AL2@larm output 10)

7180 | 7380 7670 7870 Alarm 1 of analog input 6 (AL2&larm output 11)

7182 | 7382 7671 7871 Alarm 2 of analog input 6 (AEl&arm output 12)

" Consecutive values of all analog inputs and alhbj inputs put in continuous register space. Biigputs are
placed after analog ones.

APPENDIX A
CALCULATION OF THE CHECKSUM

In this appendix some examples of function in thariguage calculating the LRC checksum for
ASCII mode and the CRC checksum for the RTU mode fi@en shown

The function for LRC calculation has two arguments:

unsigned char *outMsg; - Pointer for the communication buffercluding binary data from
which one must calculate LRC.

unsigned short usDatalLen; - Number of bytes in the communication buffer.

The function returns LRC of unsigned char type.
static unsigned char LRC(outMsg, usDatal en)
unsigned char * outMsg;

unsigned short usDatalen;

{

unsigned char uchLRC =0;

/* buffer to calculate LRC */
/* number of bytesin the buffer 7

/* initialization of LRC */
while (usDatalLen--)

uchLRC += *outMsg++;

return ((unsigned char)(-(char uchLRC)));
}

An example of function in C language calculating tBRC sum is presented below. All possible
values of CRC sum are placed in two tables.

The first table includes the highest byte of alb 2imssible values of the 16-bit CRC field, however
the second table includes the lowest byte.

The assignment of the CRC sum through table indgisifiurther more rapid than the calculation of
a new CRC value for each sign of the communicdigifer.

/* add the buffer byte without transfer*
* return the sumin the completion code up two*/

Note: The below function represents bytes of the sum @RfBer/lower, and this way the CRC
value returned by the function can be directly pthm the communication buffer.
The function serving to calculate CRC has two argoiist

unsigned char *puchMsg; - Pointer for the communication buffer, includingiy

data from which one must calculate LRC
unsigned short usDataLen; - Number of bytes in the communication buffer.
The function returns CRC of unsigned short type.

unsigned short CRC16(puchMsg, usDatal en)

unsigned char * puchMsg;
unsigned short usDatalen;

{
unsigned char uchCRChi = OxFF;

unsigned char uchCRClo = OxFF;
while (usDatalLen--)
{ uindex = uchCRChiA * puchMsg++;

uchCRChi = uchCRClo A crc_hi[ulndex];

uchCRClo =crc_lo[ulndeX] ;

}

retum(uchCRChi«8 \ uchCRClo);

}

/* buffer to calculate CRC */
/*Number of bytesin the buffer */

/* initialisation of the higher CRC byte*/
/* initialisation of the lower CRC byte */

/* CRC calculation*/

11

/ltable of the older CRC byte /

const unsigned char crc_hi[]={

0x00, OxC1, O0x81, 0x40, O0x01, O0xCO, 0x80, 0x41, O0x00xCO, 0x80, 0x41, 0x00, OxC1, 0x81,
0x40, 0x01, OxCO, 0x80, 0x41, 0x00, OxC1, 0x81, 0x40x00, O0xC1, 0x81, 0x40, 0x01, O0xCoO,
0x80, O0x41, O0x01, O0OxCO, 0x80, 0x41, O0x00, OxC1l, O0x80x40, 0x00, OxC1l, 0x81, 0x40, 0x01,
0xCO, 0x80, 0x41, 0x00, OxC1, 0x81, O0x40, O0x01, OxQmx80, O0x41, O0x01, O0xCO, 0x80, 0x41,
0x00, OxC1, 0x81, 0x40, 0x01, O0xCO, 0x80, O0x41, O0x00xC1, 0x81, 0x40, 0x00, O0xC1, 0x81,
0x40, 0x01, OxCO, 0x80, 0x41, 0x00, OxC1, 0x81, 0x40x01, O0xCO, 0x80, 0x41, O0x01, 0xCo0,
0x80, 0x41, O0x00, O0xC1, 0x81, 0x40, 0x00, OxC1l, 0x8@x40, 0x01, O0xCO, 0x80, O0x41, 0x01,
0xC0O, 0x80, 0x41, 0x00, OxC1, 0x81, 0x40, O0x01, OxQmx80, 0x41, O0x00, O0xC1l, 0x81, 0x40,
0x00, OxC1, O0x81, 0x40, O0x01, O0xCO, 0x80, 0x41, O0x00xCO, 0x80, 0x41, 0x00, OxC1, 0x81,
0x40, 0x00, OxC1, 0x81, 0x40, O0x01, OxCO, 0x80, O0x40x00, O0xC1, 0x81, 0x40, 0x01, O0xCO,
0x80, O0x41, O0x01, OxCO, 0x80, 0x41, O0x00, OxC1l, O0x80x40, 0x00, OxC1, 0x81, 0x40, O0x01,
0xCO, 0x80, 0x41, 0x01, OxCO, 0x80, O0x41, 0x00, Ox(l1x81, 0x40, O0x01, O0xCO, 0x80, 0x41,
0x00, OxC1, O0x81, 0x40, O0x00, OxC1, 0x81, 0x40, O0x00xCO, 0x80, 0x41, 0x00, OxC1, 0x81,
0x40, 0x01, OxCO, 0x80, 0x41, O0x01, OxCO, 0x80, 0x4@x00, O0xC1l, 0x81, 0x40, O0x01, 0xCO,
0x80, 0x41, O0x00, O0xC1, 0x81, 0x40, 0x00, OxC1l, 0x8@x40, 0x01, O0xCO, 0x80, 0x41, 0x01,
0xC0O, 0x80, 0x41, 0x00, OxC1, 0x81, 0x40, O0x00, O0x(1x81, O0x40, O0x01, OxCO, 0x80, 0x41,
0x00, OxC1, 0x81, 0x40, 0x01, O0xCO, 0x80, O0x41, 0x0@0xCO, 0x80, O0x41, 0x00, O0xC1, 0x81,
0x40

k

/ltable of the lower CRC byte /

const unsigned char crc_lo[]={

0x00, OxCO0, O0xC1, 0x01, OxC3, 0x03, O0x02, 0xC2, 0xC6,060x 0x07, OxC7, 0x05, O0xC5, O0xC4,
0x04, OxCC, O0x0C, O0xOD, OxCD, OxOF, OxCF, OxCE, OxOE, Ax00xCA, 0xCB, 0x0B, 0xC9, 0x09,
0x08, O0xC8, 0xD8, 0x18, 0x19, O0xD9, 0x1B, 0xDB, 0xDBx1A, Ox1E, OxDE, OxDF, Ox1F, O0xDD,
0x1D, Ox1C, OxDC, 0x14, 0xD4, 0xD5, 0x15, OxD7, 0x14Qx16, O0xD6, 0xD2, 0x12, O0x13, O0xD3,
Ox11, OxD1, O0xDO, 0x10, OxFO, 0x30, O0x31, OxFl1l, ®x30xF3, OxF2, 0x32, 0x36, OxF6, OxF7,
0x37, OxF5, 0x35, 0x34, OxF4, O0x3C, OxFC, OxFD, Ox3DxFF, Ox3F, Ox3E, OxFE, OxFA, O0x3A,
0x3B, OxFB, 0x39, OxF9, OxF8, 0x38, 0x28, OxE8, O0xEO0x29, OxEB, 0x2B, O0x2A, OxEA, OxEE,
Ox2E, Ox2F, OxEF, 0x2D, OxED, OXEC, 0x2C, OxE4, O0x20x25, OxE5, 0x27, OxE7, OxE6, 0x26,
0x22, OxE2, OxE3, 0x23, OxE1l, 0x21, 0x20, OxEO, OxA0x60, O0x61, OxAl, 0x63, O0xA3, O0xA2,
0x62, 0x66, OxA6, OxA7, 0x67, OxA5, O0x65, O0x64, OKkA Ox6C, OxAC, OxAD, 0x6D, OxAF, Ox6F,
Ox6E, OxAE, OxAA, Ox6A, 0x6B, OxAB, 0x69, O0xA9, O0xA80x68, 0x78, 0xB8, 0xB9, 0x79, O0xBB,
0x7B, Ox7A, OxBA, OxBE, Ox7E, Ox7F, OxBF, 0x7D, OxBD, BX¥ O0x7C, O0xB4, O0x74, O0x75, OxB5,
0x77, O0xB7, 0xB6, 0x76, O0x72, O0xB2, 0xB3, O0x73, O0xBl,7Dx 0x70, O0xBO, 0x50, 0x90, 0x91,
0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, Mx90x55, 0x95, 0x94, 0x54, 0x9C, O0x5C,
0x5D, 0x9D, Ox5F, Ox9F, Ox9E, Ox5E, Ox5A, Ox9A, &x9 0x5B, 0x99, O0x59, 0x58, 0x98, 0x88,
0x48, 0x49, O0x89, O0x4B, 0x8B, O0x8A, O0x4A, Ox4E, Ox8Mx8F, O0x4F, 0x8D, 0x4D, 0x4C, O0x8C,
0x44, 0x84, O0x85, 0x45, O0x87, 0x47, O0x46, O0x86, XAx80x42, 0x43, 0x83, 0x41, 0x81, 0x80,
0x40

h

LZAE Lumel S.A., KD8-09A/2

